Let K be the sum of the coefficients of the odd powers of $$x$$ in the expansion of $$(1+x)^{99}$$. Let $$a$$ be the middle term in the expansion of $${\left( {2 + {1 \over {\sqrt 2 }}} \right)^{200}}$$. If $${{{}^{200}{C_{99}}K} \over a} = {{{2^l}m} \over n}$$, where m and n are odd numbers, then the ordered pair $$(l,\mathrm{n})$$ is equal to
If $$a_r$$ is the coefficient of $$x^{10-r}$$ in the Binomial expansion of $$(1 + x)^{10}$$, then $$\sum\limits_{r = 1}^{10} {{r^3}{{\left( {{{{a_r}} \over {{a_{r - 1}}}}} \right)}^2}} $$ is equal to
If $${({}^{30}{C_1})^2} + 2{({}^{30}{C_2})^2} + 3{({}^{30}{C_3})^2}\, + \,...\, + \,30{({}^{30}{C_{30}})^2} = {{\alpha 60!} \over {{{(30!)}^2}}}$$ then $$\alpha$$ is equal to :
The value of $$\sum\limits_{r = 0}^{22} {{}^{22}{C_r}{}^{23}{C_r}} $$ is