1
JEE Main 2023 (Online) 30th January Evening Shift
+4
-1 Let $x=(8 \sqrt{3}+13)^{13}$ and $y=(7 \sqrt{2}+9)^9$. If $[t]$ denotes the greatest integer $\leq t$, then :
A
$[x]$ is odd but $[y]$ is even
B
$[x]$ and $[y]$ are both odd
C
$[x]+[y]$ is even
D
$[x]$ is even but $[y]$ is odd
2
JEE Main 2023 (Online) 30th January Morning Shift
+4
-1 If the coefficient of $$x^{15}$$ in the expansion of $$\left(\mathrm{a} x^{3}+\frac{1}{\mathrm{~b} x^{1 / 3}}\right)^{15}$$ is equal to the coefficient of $$x^{-15}$$ in the expansion of $$\left(a x^{1 / 3}-\frac{1}{b x^{3}}\right)^{15}$$, where $$a$$ and $$b$$ are positive real numbers, then for each such ordered pair $$(\mathrm{a}, \mathrm{b})$$ :

A
a = 3b
B
ab = 1
C
ab = 3
D
a = b
3
JEE Main 2023 (Online) 30th January Morning Shift
+4
-1
Out of Syllabus The coefficient of $${x^{301}}$$ in $${(1 + x)^{500}} + x{(1 + x)^{499}} + {x^2}{(1 + x)^{498}}\, + \,...\, + \,{x^{500}}$$ is :

A
$${}^{500}{C_{300}}$$
B
$${}^{501}{C_{200}}$$
C
$${}^{500}{C_{301}}$$
D
$${}^{501}{C_{302}}$$
4
JEE Main 2023 (Online) 29th January Evening Shift
+4
-1 Let K be the sum of the coefficients of the odd powers of $$x$$ in the expansion of $$(1+x)^{99}$$. Let $$a$$ be the middle term in the expansion of $${\left( {2 + {1 \over {\sqrt 2 }}} \right)^{200}}$$. If $${{{}^{200}{C_{99}}K} \over a} = {{{2^l}m} \over n}$$, where m and n are odd numbers, then the ordered pair $$(l,\mathrm{n})$$ is equal to

A
(50, 101)
B
(50, 51)
C
(51, 101)
D
(51, 99)
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination