1
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
If the expansion in powers of $$x$$ of the function $${1 \over {\left( {1 - ax} \right)\left( {1 - bx} \right)}}$$ is $${a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3}.....$$ then $${a_n}$$ is
A
$${{{b^n} - {a^n}} \over {b - a}}$$
B
$${{{a^n} - {b^n}} \over {b - a}}$$
C
$${{{a^{n + 1}} - {b^{n + 1}}} \over {b - a}}$$
D
$${{{b^{n + 1}} - {a^{n + 1}}} \over {b - a}}$$
2
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
For natural numbers $$m$$ , $$n$$, if $${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n}\,\, = 1 + {a_1}y + {a_2}{y^2} + ..........$$ and $${a_1} = {a_2} = 10,$$ then $$\left( {m,\,n} \right)$$ is
A
$$\left( {20,\,45} \right)$$
B
$$\left( {35,\,20} \right)$$
C
$$\left( {45,\,35} \right)$$
D
$$\left( {35,\,45} \right)$$
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
The value of $$\,{}^{50}{C_4} + \sum\limits_{r = 1}^6 {^{56 - r}} {C_3}$$ is
A
$${}^{55}{C_4}$$
B
$${}^{55}{C_3}$$
C
$${}^{56}{C_3}$$
D
$${}^{56}{C_4}$$
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If the coefficient of $${x^7}$$ in $${\left[ {a{x^2} + \left( {{1 \over {bx}}} \right)} \right]^{11}}$$ equals the coefficient of $${x^{ - 7}}$$ in $${\left[ {ax - \left( {{1 \over {b{x^2}}}} \right)} \right]^{11}}$$, then $$a$$ and $$b$$ satisfy the relation
A
$$a - b = 1$$
B
$$a + b = 1$$
C
$${a \over b} = 1$$
D
$$ab = 1$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12