1
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
If the expansion in powers of $$x$$ of the function $${1 \over {\left( {1 - ax} \right)\left( {1 - bx} \right)}}$$ is $${a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3}.....$$ then $${a_n}$$ is
A
$${{{b^n} - {a^n}} \over {b - a}}$$
B
$${{{a^n} - {b^n}} \over {b - a}}$$
C
$${{{a^{n + 1}} - {b^{n + 1}}} \over {b - a}}$$
D
$${{{b^{n + 1}} - {a^{n + 1}}} \over {b - a}}$$
2
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
For natural numbers $$m$$ , $$n$$, if $${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n}\,\, = 1 + {a_1}y + {a_2}{y^2} + ..........$$ and $${a_1} = {a_2} = 10,$$ then $$\left( {m,\,n} \right)$$ is
A
$$\left( {20,\,45} \right)$$
B
$$\left( {35,\,20} \right)$$
C
$$\left( {45,\,35} \right)$$
D
$$\left( {35,\,45} \right)$$
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
The value of $$\,{}^{50}{C_4} + \sum\limits_{r = 1}^6 {^{56 - r}} {C_3}$$ is
A
$${}^{55}{C_4}$$
B
$${}^{55}{C_3}$$
C
$${}^{56}{C_3}$$
D
$${}^{56}{C_4}$$
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If the coefficient of $${x^7}$$ in $${\left[ {a{x^2} + \left( {{1 \over {bx}}} \right)} \right]^{11}}$$ equals the coefficient of $${x^{ - 7}}$$ in $${\left[ {ax - \left( {{1 \over {b{x^2}}}} \right)} \right]^{11}}$$, then $$a$$ and $$b$$ satisfy the relation
A
$$a - b = 1$$
B
$$a + b = 1$$
C
$${a \over b} = 1$$
D
$$ab = 1$$
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12