1
JEE Main 2023 (Online) 30th January Morning Shift
Numerical
+4
-1
Change Language

Let $$z=1+i$$ and $$z_{1}=\frac{1+i \bar{z}}{\bar{z}(1-z)+\frac{1}{z}}$$. Then $$\frac{12}{\pi} \arg \left(z_{1}\right)$$ is equal to __________.

Your input ____
2
JEE Main 2023 (Online) 29th January Evening Shift
Numerical
+4
-1
Change Language

Let $$\alpha = 8 - 14i,A = \left\{ {z \in c:{{\alpha z - \overline \alpha \overline z } \over {{z^2} - {{\left( {\overline z } \right)}^2} - 112i}}=1} \right\}$$ and $$B = \left\{ {z \in c:\left| {z + 3i} \right| = 4} \right\}$$. Then $$\sum\limits_{z \in A \cap B} {({\mathop{\rm Re}\nolimits} z - {\mathop{\rm Im}\nolimits} z)} $$ is equal to ____________.

Your input ____
3
JEE Main 2022 (Online) 28th July Evening Shift
Numerical
+4
-1
Change Language

Let $$\mathrm{z}=a+i b, b \neq 0$$ be complex numbers satisfying $$z^{2}=\bar{z} \cdot 2^{1-z}$$. Then the least value of $$n \in N$$, such that $$z^{n}=(z+1)^{n}$$, is equal to __________.

Your input ____
4
JEE Main 2022 (Online) 27th July Morning Shift
Numerical
+4
-1
Change Language

Let $$S=\left\{z \in \mathbb{C}: z^{2}+\bar{z}=0\right\}$$. Then $$\sum\limits_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$$ is equal to ______________.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12