1
JEE Main 2023 (Online) 29th January Evening Shift
Numerical
+4
-1

Let $$\alpha = 8 - 14i,A = \left\{ {z \in c:{{\alpha z - \overline \alpha \overline z } \over {{z^2} - {{\left( {\overline z } \right)}^2} - 112i}}=1} \right\}$$ and $$B = \left\{ {z \in c:\left| {z + 3i} \right| = 4} \right\}$$. Then $$\sum\limits_{z \in A \cap B} {({\mathop{\rm Re}\nolimits} z - {\mathop{\rm Im}\nolimits} z)}$$ is equal to ____________.

2
JEE Main 2022 (Online) 28th July Evening Shift
Numerical
+4
-1

Let $$\mathrm{z}=a+i b, b \neq 0$$ be complex numbers satisfying $$z^{2}=\bar{z} \cdot 2^{1-z}$$. Then the least value of $$n \in N$$, such that $$z^{n}=(z+1)^{n}$$, is equal to __________.

3
JEE Main 2022 (Online) 27th July Morning Shift
Numerical
+4
-1

Let $$S=\left\{z \in \mathbb{C}: z^{2}+\bar{z}=0\right\}$$. Then $$\sum\limits_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$$ is equal to ______________.

4
JEE Main 2022 (Online) 29th June Morning Shift
Numerical
+4
-1

Let $$S = \{ z \in C:|z - 2| \le 1,\,z(1 + i) + \overline z (1 - i) \le 2\}$$. Let $$|z - 4i|$$ attains minimum and maximum values, respectively, at z1 $$\in$$ S and z2 $$\in$$ S. If $$5(|{z_1}{|^2} + |{z_2}{|^2}) = \alpha + \beta \sqrt 5$$, where $$\alpha$$ and $$\beta$$ are integers, then the value of $$\alpha$$ + $$\beta$$ is equal to ___________.