1
JEE Main 2024 (Online) 31st January Morning Shift
Numerical
+4
-1

If $$\alpha$$ denotes the number of solutions of $$|1-i|^x=2^x$$ and $$\beta=\left(\frac{|z|}{\arg (z)}\right)$$, where $$z=\frac{\pi}{4}(1+i)^4\left[\frac{1-\sqrt{\pi} i}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} i}\right], i=\sqrt{-1}$$, then the distance of the point $$(\alpha, \beta)$$ from the line $$4 x-3 y=7$$ is __________.

2
JEE Main 2024 (Online) 29th January Evening Shift
Numerical
+4
-1

Let $$\alpha, \beta$$ be the roots of the equation $$x^2-\sqrt{6} x+3=0$$ such that $$\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)$$. Let $$a, b$$ be integers not divisible by 3 and $$n$$ be a natural number such that $$\frac{\alpha^{99}}{\beta}+\alpha^{98}=3^n(a+i b), i=\sqrt{-1}$$. Then $$n+a+b$$ is equal to __________.

3
JEE Main 2024 (Online) 29th January Morning Shift
Numerical
+4
-1

Let $$\alpha, \beta$$ be the roots of the equation $$x^2-x+2=0$$ with $$\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)$$. Then $$\alpha^6+\alpha^4+\beta^4-5 \alpha^2$$ is equal to ___________.

4
JEE Main 2024 (Online) 27th January Evening Shift
Numerical
+4
-1

Let the complex numbers $$\alpha$$ and $$\frac{1}{\bar{\alpha}}$$ lie on the circles $$\left|z-z_0\right|^2=4$$ and $$\left|z-z_0\right|^2=16$$ respectively, where $$z_0=1+i$$. Then, the value of $$100|\alpha|^2$$ is __________.