Let $$\alpha, \beta$$ be the roots of the equation $$x^2-\sqrt{6} x+3=0$$ such that $$\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)$$. Let $$a, b$$ be integers not divisible by 3 and $$n$$ be a natural number such that $$\frac{\alpha^{99}}{\beta}+\alpha^{98}=3^n(a+i b), i=\sqrt{-1}$$. Then $$n+a+b$$ is equal to __________.
Let $$\alpha, \beta$$ be the roots of the equation $$x^2-x+2=0$$ with $$\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)$$. Then $$\alpha^6+\alpha^4+\beta^4-5 \alpha^2$$ is equal to ___________.
Let the complex numbers $$\alpha$$ and $$\frac{1}{\bar{\alpha}}$$ lie on the circles $$\left|z-z_0\right|^2=4$$ and $$\left|z-z_0\right|^2=16$$ respectively, where $$z_0=1+i$$. Then, the value of $$100|\alpha|^2$$ is __________.