NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Main 2021 (Online) 27th August Evening Shift

Numerical
Let z1 and z2 be two complex numbers such that $$\arg ({z_1} - {z_2}) = {\pi \over 4}$$ and z1, z2 satisfy the equation | z $$-$$ 3 | = Re(z). Then the imaginary part of z1 + z2 is equal to ___________.
Your Input ________

Answer

Correct Answer is 6

Explanation

Let z1 = x1 + iy ; z2 = x2 + iy2

z1 $$-$$ z2 = (x1 $$-$$ x2) + i(y1 $$-$$ y2)

$$\therefore$$ $$\arg ({z_1} - {z_2}) = {\pi \over 4}$$ $$\Rightarrow$$ $${\tan ^{ - 1}}\left( {{{{y_1} - {y_2}} \over {{x_1} - {x_2}}}} \right) = {\pi \over 4}$$

$${y_1} - {y_2} = {x_1} - {x_2}$$ ....... (1)

$$|{z_1} - 3|\, = {\mathop{\rm Re}\nolimits} ({z_1}) \Rightarrow {({x_1} - 3)^2} + {y_1}^2 = {x_1}^2$$ .... (2)

$$|{z_2} - 3|\, = {\mathop{\rm Re}\nolimits} ({z_2}) \Rightarrow {({x_2} - 3)^2} + {y_2}^2 = {x_2}^2$$ .... (3)

sub (2) & (3)

$${({x_1} - 3)^2} - {({x_2} - 3)^2} + {y_1}^2 - {y_2}^2 = {x_1}^2 - {x_2}^2$$

$$({x_1} - {x_2})({x_1} + {x_2} - 6) + ({y_1} - {y_2})({y_1} + {y_2})$$

$$ = ({x_1} - {x_2})({x_1} + {x_2})$$

$${x_1} + {x_2} - 6 + {y_1} + {y_2} = {x_1} + {x_2} \Rightarrow {y_1} + {y_2} = 6$$
2

JEE Main 2021 (Online) 27th August Evening Shift

Numerical
The probability distribution of random variable X is given by :

X 1 2 3 4 5
P(X) K 2K 2K 3K K


Let p = P(1 < X < 4 | X < 3). If 5p = $$\lambda$$K, then $$\lambda$$ equal to ___________.
Your Input ________

Answer

Correct Answer is 30

Explanation

$$\sum {P(X) = 1 \Rightarrow k + 2k + 3} k + k = 1$$

$$ \Rightarrow k = {1 \over 9}$$

Now, $$p = P\left( {{{kx < 4} \over {X < 3}}} \right) = {{P(X = 2)} \over {P(X < 3)}} = {{{{2k} \over {9k}}} \over {{k \over {9k}} + {{2k} \over {9k}}}} = {2 \over 3}$$

$$ \Rightarrow p = {2 \over 3}$$

Now, $$5p = \lambda k$$

$$ \Rightarrow (5)\left( {{2 \over 3}} \right) = \lambda (1/9)$$

$$ \Rightarrow \lambda = 30$$
3

JEE Main 2021 (Online) 27th August Evening Shift

Numerical
Let S be the sum of all solutions (in radians) of the equation $${\sin ^4}\theta + {\cos ^4}\theta - \sin \theta \cos \theta = 0$$ in [0, 4$$\pi$$]. Then $${{8S} \over \pi }$$ is equal to ____________.
Your Input ________

Answer

Correct Answer is 56

Explanation

Given equation

$${\sin ^4}\theta + {\cos ^4}\theta - \sin \theta \cos \theta = 0$$

$$ \Rightarrow 1 - {\sin ^2}\theta {\cos ^2}\theta - \sin \theta \cos \theta = 0$$

$$ \Rightarrow 2 - {(\sin 2\theta )^2} - \sin 2\theta = 0$$

$$ \Rightarrow {(\sin 2\theta )^2} + (\sin 2\theta ) - 2 = 0$$

$$ \Rightarrow (\sin 2\theta + 2)(\sin 2\theta - 1) = 0$$

$$ \Rightarrow \sin 2\theta = 1$$ or $$\sin 2\theta = - 2$$ (Not Possible)

$$ \Rightarrow 2\theta = {\pi \over 2},{{5\pi } \over 2},{{9\pi } \over 2},{{13\pi } \over 2}$$

$$ \Rightarrow \theta = {\pi \over 4},{{5\pi } \over 4},{{9\pi } \over 4},{{13\pi } \over 4}$$

$$ \Rightarrow S = {\pi \over 4} + {{5\pi } \over 4} + {{9\pi } \over 4} + {{13\pi } \over 4} = 7\pi $$

$$ \Rightarrow {{8S} \over \pi } = {{8 \times 7\pi } \over \pi } = 56.00$$
4

JEE Main 2021 (Online) 18th March Morning Shift

Numerical
The number of solutions of the equation

$$|\cot x| = \cot x + {1 \over {\sin x}}$$ in the interval [ 0, 2$$\pi$$ ] is
Your Input ________

Answer

Correct Answer is 1

Explanation

Case I : When cot x > 0, $$x \in \left[ {0,{\pi \over 2}} \right] \cup \left[ {\pi ,{{3\pi } \over 2}} \right]$$

$$\cot x = \cot x + {1 \over {\sin x}} \Rightarrow $$ not possible

Case II : When cot x < 0, $$x \in \left[ {{\pi \over 2},\pi } \right] \cup \left[ {{{3\pi } \over 2},2\pi } \right]$$

$$ - \cot x = \cot x + {1 \over {\sin x}}$$

$$ \Rightarrow {{ - 2\cos x} \over {\sin x}} = {1 \over {\sin x}}$$

$$ \Rightarrow \cos x = {{ - 1} \over 2}$$

$$ \Rightarrow x = {{2\pi } \over 3},{{4\pi } \over 3}$$(Rejected)

One solution.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12