Let the complex numbers $$\alpha$$ and $$\frac{1}{\bar{\alpha}}$$ lie on the circles $$\left|z-z_0\right|^2=4$$ and $$\left|z-z_0\right|^2=16$$ respectively, where $$z_0=1+i$$. Then, the value of $$100|\alpha|^2$$ is __________.
Let $$w=z \bar{z}+k_{1} z+k_{2} i z+\lambda(1+i), k_{1}, k_{2} \in \mathbb{R}$$. Let $$\operatorname{Re}(w)=0$$ be the circle $$\mathrm{C}$$ of radius 1 in the first quadrant touching the line $$y=1$$ and the $$y$$-axis. If the curve $$\operatorname{Im}(w)=0$$ intersects $$\mathrm{C}$$ at $$\mathrm{A}$$ and $$\mathrm{B}$$, then $$30(A B)^{2}$$ is equal to __________
Let $$\mathrm{S}=\left\{z \in \mathbb{C}-\{i, 2 i\}: \frac{z^{2}+8 i z-15}{z^{2}-3 i z-2} \in \mathbb{R}\right\}$$. If $$\alpha-\frac{13}{11} i \in \mathrm{S}, \alpha \in \mathbb{R}-\{0\}$$, then $$242 \alpha^{2}$$ is equal to _________.