1
JEE Main 2021 (Online) 26th February Evening Shift
Numerical
+4
-1
Let z be those complex numbers which satisfy

| z + 5 | $$\le$$ 4 and z(1 + i) + $$\overline z$$(1 $$-$$ i) $$\ge$$ $$-$$10, i = $$\sqrt { - 1}$$.

If the maximum value of | z + 1 |2 is $$\alpha$$ + $$\beta$$$$\sqrt 2$$, then the value of ($$\alpha$$ + $$\beta$$) is ____________.
2
JEE Main 2021 (Online) 24th February Evening Shift
Numerical
+4
-1 Let $$i = \sqrt { - 1}$$. If $${{{{\left( { - 1 + i\sqrt 3 } \right)}^{21}}} \over {{{(1 - i)}^{24}}}} + {{{{\left( {1 + i\sqrt 3 } \right)}^{21}}} \over {{{(1 + i)}^{24}}}} = k$$, and $$n = [|k|]$$ be the greatest integral part of | k |. Then $$\sum\limits_{j = 0}^{n + 5} {{{(j + 5)}^2} - \sum\limits_{j = 0}^{n + 5} {(j + 5)} }$$ is equal to _________.
3
JEE Main 2021 (Online) 24th February Morning Shift
Numerical
+4
-1 If the least and the largest real values of a, for which the
equation z + $$\alpha$$|z – 1| + 2i = 0 (z $$\in$$ C and i = $$\sqrt { - 1}$$) has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
4
JEE Main 2020 (Online) 3rd September Morning Slot
Numerical
+4
-0
If $${\left( {{{1 + i} \over {1 - i}}} \right)^{{m \over 2}}} = {\left( {{{1 + i} \over {1 - i}}} \right)^{{n \over 3}}} = 1$$, (m, n $$\in$$ N) then the greatest common divisor of the least values of m and n is _______ .
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination