Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=3 \hat{i}-3 \hat{j}+3 \hat{k}, \vec{c}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{d}$ be a vector such that $\vec{b} \times \vec{d}=\vec{c} \times \vec{d}$ and $\vec{a} \cdot \vec{d}=4$. Then $|(\vec{a} \times \vec{d})|^2$ is equal to___________.
Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=3 \hat{i}+2 \hat{j}-\hat{k}, \vec{c}=\lambda \hat{j}+\mu \hat{k}$ and $\hat{d}$ be a unit vector such that $\vec{a} \times \hat{d}=\vec{b} \times \hat{d}$ and $\vec{c} \cdot \hat{d}=1$. If $\vec{c}$ is perpendicular to $\vec{a}$, then $|3 \lambda \hat{d}+\mu \vec{c}|^2$ is equal to________
Let $\vec{a}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{d}}=\vec{a} \times \overrightarrow{\mathrm{b}}$. If $\overrightarrow{\mathrm{c}}$ is a vector such that $\vec{a} \cdot \overrightarrow{\mathrm{c}}=|\overrightarrow{\mathrm{c}}|$, $|\overrightarrow{\mathrm{c}}-2 \vec{a}|^2=8$ and the angle between $\overrightarrow{\mathrm{d}}$ and $\overrightarrow{\mathrm{c}}$ is $\frac{\pi}{4}$, then $|10-3 \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}}|+|\overrightarrow{\mathrm{d}} \times \overrightarrow{\mathrm{c}}|^2$ is equal to _________.
Let $\vec{c}$ be the projection vector of $\vec{b}=\lambda \hat{i}+4 \hat{k}, \lambda>0$, on the vector $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k}$. If $|\vec{a}+\vec{c}|=7$, then the area of the parallelogram formed by the vectors $\vec{b}$ and $\vec{c}$ is _________.