Javascript is required
1
JEE Main 2021 (Online) 20th July Evening Shift
Numerical  +4  -1
For p > 0, a vector $${\overrightarrow v _2} = 2\widehat i + (p + 1)\widehat j$$ is obtained by rotating the vector $${\overrightarrow v _1} = \sqrt 3 p\widehat i + \widehat j$$ by an angle $$\theta$$ about origin in counter clockwise direction. If $$\tan \theta = {{\left( {\alpha \sqrt 3 - 2} \right)} \over {\left( {4\sqrt 3 + 3} \right)}}$$, then the value of $$\alpha$$ is equal to _____________.
2
JEE Main 2021 (Online) 20th July Morning Shift
Numerical  +4  -1
Let $$\overrightarrow a$$, $$\overrightarrow b$$, $$\overrightarrow c$$ be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle $$\theta$$, with the vector $$\overrightarrow a$$ + $$\overrightarrow b$$ + $$\overrightarrow c$$. Then 36cos22$$\theta$$ is equal to ___________.
Let P be a plane passing through the points (1, 0, 1), (1, $$-$$2, 1) and (0, 1, $$-$$2). Let a vector $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + \gamma \widehat k$$ be such that $$\overrightarrow a$$ is parallel to the plane P, perpendicular to $$(\widehat i + 2\widehat j + 3\widehat k)$$ and $$\overrightarrow a \,.\,(\widehat i + \widehat j + 2\widehat k) = 2$$, then $${(\alpha - \beta + \gamma )^2}$$ equals ____________.
If the shortest distance between the lines $$\overrightarrow {{r_1}} = \alpha \widehat i + 2\widehat j + 2\widehat k + \lambda (\widehat i - 2\widehat j + 2\widehat k)$$, $$\lambda$$ $$\in$$ R, $$\alpha$$ > 0 and $$\overrightarrow {{r_2}} = - 4\widehat i - \widehat k + \mu (3\widehat i - 2\widehat j - 2\widehat k)$$, $$\mu$$ $$\in$$ R is 9, then $$\alpha$$ is equal to ____________.