1
JEE Main 2021 (Online) 25th July Morning Shift
Numerical
+4
-1
Let $$\overrightarrow p = 2\widehat i + 3\widehat j + \widehat k$$ and $$\overrightarrow q = \widehat i + 2\widehat j + \widehat k$$ be two vectors. If a vector $$\overrightarrow r = (\alpha \widehat i + \beta \widehat j + \gamma \widehat k)$$ is perpendicular to each of the vectors ($$(\overrightarrow p + \overrightarrow q )$$ and $$(\overrightarrow p - \overrightarrow q )$$, and $$\left| {\overrightarrow r } \right| = \sqrt 3$$, then $$\left| \alpha \right| + \left| \beta \right| + \left| \gamma \right|$$ is equal to _______________.
2
JEE Main 2021 (Online) 20th July Evening Shift
Numerical
+4
-1
For p > 0, a vector $${\overrightarrow v _2} = 2\widehat i + (p + 1)\widehat j$$ is obtained by rotating the vector $${\overrightarrow v _1} = \sqrt 3 p\widehat i + \widehat j$$ by an angle $$\theta$$ about origin in counter clockwise direction. If $$\tan \theta = {{\left( {\alpha \sqrt 3 - 2} \right)} \over {\left( {4\sqrt 3 + 3} \right)}}$$, then the value of $$\alpha$$ is equal to _____________.
3
JEE Main 2021 (Online) 20th July Morning Shift
Numerical
+4
-1
Let $$\overrightarrow a$$, $$\overrightarrow b$$, $$\overrightarrow c$$ be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle $$\theta$$, with the vector $$\overrightarrow a$$ + $$\overrightarrow b$$ + $$\overrightarrow c$$. Then 36cos22$$\theta$$ is equal to ___________.
4
JEE Main 2021 (Online) 20th July Morning Shift
Numerical
+4
-1
If the shortest distance between the lines $$\overrightarrow {{r_1}} = \alpha \widehat i + 2\widehat j + 2\widehat k + \lambda (\widehat i - 2\widehat j + 2\widehat k)$$, $$\lambda$$ $$\in$$ R, $$\alpha$$ > 0 and $$\overrightarrow {{r_2}} = - 4\widehat i - \widehat k + \mu (3\widehat i - 2\widehat j - 2\widehat k)$$, $$\mu$$ $$\in$$ R is 9, then $$\alpha$$ is equal to ____________.