Let $$\overrightarrow{\mathrm{a}}=\hat{i}-3 \hat{j}+7 \hat{k}, \overrightarrow{\mathrm{b}}=2 \hat{i}-\hat{j}+\hat{k}$$ and $$\overrightarrow{\mathrm{c}}$$ be a vector such that $$(\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}=3(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})$$. If $$\vec{a} \cdot \vec{c}=130$$, then $$\vec{b} \cdot \vec{c}$$ is equal to __________.
Let $$\mathrm{ABC}$$ be a triangle of area $$15 \sqrt{2}$$ and the vectors $$\overrightarrow{\mathrm{AB}}=\hat{i}+2 \hat{j}-7 \hat{k}, \overrightarrow{\mathrm{BC}}=\mathrm{a} \hat{i}+\mathrm{b} \hat{j}+\mathrm{c} \hat{k}$$ and $$\overrightarrow{\mathrm{AC}}=6 \hat{i}+\mathrm{d} \hat{j}-2 \hat{k}, \mathrm{~d}>0$$. Then the square of the length of the largest side of the triangle $$\mathrm{ABC}$$ is _________.
Let $$\vec{a}=3 \hat{i}+2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$$ and $$\vec{c}$$ be a vector such that $$(\vec{a}+\vec{b}) \times \vec{c}=2(\vec{a} \times \vec{b})+24 \hat{j}-6 \hat{k}$$ and $$(\vec{a}-\vec{b}+\hat{i}) \cdot \vec{c}=-3$$. Then $$|\vec{c}|^2$$ is equal to ________.