1
JEE Main 2020 (Online) 2nd September Evening Slot
Numerical
+4
-0
Let the position vectors of points 'A' and 'B' be
$$\widehat i + \widehat j + \widehat k$$ and $$2\widehat i + \widehat j + 3\widehat k$$, respectively. A point 'P' divides the line segment AB internally in the ratio $$\lambda$$ : 1 ( $$\lambda$$ > 0). If O is the origin and
$$\overrightarrow {OB} .\overrightarrow {OP} - 3{\left| {\overrightarrow {OA} \times \overrightarrow {OP} } \right|^2} = 6$$, then $$\lambda$$ is equal to______.
2
JEE Main 2020 (Online) 2nd September Morning Slot
Numerical
+4
-0
Let $$\overrightarrow a$$, $$\overrightarrow b$$ and $$\overrightarrow c$$ be three unit vectors such that
$${\left| {\overrightarrow a - \overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a - \overrightarrow c } \right|^2}$$ = 8.

Then $${\left| {\overrightarrow a + 2\overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a + 2\overrightarrow c } \right|^2}$$ is equal to ______.
3
JEE Main 2020 (Online) 9th January Evening Slot
Numerical
+4
-0
Let $$\overrightarrow a$$, $$\overrightarrow b$$ and $$\overrightarrow c$$ be three vectors such that $$\left| {\overrightarrow a } \right| = \sqrt 3$$, $$\left| {\overrightarrow b } \right| = 5,\overrightarrow b .\overrightarrow c = 10$$ and the angle between $$\overrightarrow b$$ and $$\overrightarrow c$$ is $${\pi \over 3}$$. If $${\overrightarrow a }$$ is perpendicular to the vector $$\overrightarrow b \times \overrightarrow c$$ , then $$\left| {\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right)} \right|$$ is equal to _____.
4
JEE Main 2020 (Online) 9th January Morning Slot
Numerical
+4
-0
Out of Syllabus
If the vectors, $$\overrightarrow p = \left( {a + 1} \right)\widehat i + a\widehat j + a\widehat k$$,

$$\overrightarrow q = a\widehat i + \left( {a + 1} \right)\widehat j + a\widehat k$$ and

$$\overrightarrow r = a\widehat i + a\widehat j + \left( {a + 1} \right)\widehat k\left( {a \in R} \right)$$

are coplanar and $$3{\left( {\overrightarrow p .\overrightarrow q } \right)^2} - \lambda \left| {\overrightarrow r \times \overrightarrow q } \right|^2 = 0$$, then the value of $$\lambda$$ is ______.