1
JEE Main 2021 (Online) 17th March Evening Shift
Numerical
+4
-1
Let $$\overrightarrow x$$ be a vector in the plane containing vectors $$\overrightarrow a = 2\widehat i - \widehat j + \widehat k$$ and $$\overrightarrow b = \widehat i + 2\widehat j - \widehat k$$. If the vector $$\overrightarrow x$$ is perpendicular to $$\left( {3\widehat i + 2\widehat j - \widehat k} \right)$$ and its projection on $$\overrightarrow a$$ is $${{17\sqrt 6 } \over 2}$$, then the value of $$|\overrightarrow x {|^2}$$ is equal to __________.
2
JEE Main 2021 (Online) 17th March Morning Shift
Numerical
+4
-1
Out of Syllabus
If $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + 3\widehat k$$,

$$\overrightarrow b = - \beta \widehat i - \alpha \widehat j - \widehat k$$ and

$$\overrightarrow c = \widehat i - 2\widehat j - \widehat k$$

such that $$\overrightarrow a \,.\,\overrightarrow b = 1$$ and $$\overrightarrow b \,.\,\overrightarrow c = - 3$$, then $${1 \over 3}\left( {\left( {\overrightarrow a \times \overrightarrow b } \right)\,.\,\overrightarrow c } \right)$$ is equal to _____________.
3
JEE Main 2021 (Online) 16th March Evening Shift
Numerical
+4
-1
Out of Syllabus
Let $$\overrightarrow c$$ be a vector perpendicular to the vectors, $$\overrightarrow a$$ = $$\widehat i$$ + $$\widehat j$$ $$-$$ $$\widehat k$$ and
$$\overrightarrow b$$ = $$\widehat i$$ + 2$$\widehat j$$ + $$\widehat k$$. If $$\overrightarrow c \,.\,\left( {\widehat i + \widehat j + 3\widehat k} \right)$$ = 8 then the value of
$$\overrightarrow c$$ . $$\left( {\overrightarrow a \times \overrightarrow b } \right)$$ is equal to __________.
4
JEE Main 2021 (Online) 25th February Evening Shift
Numerical
+4
-1
Let $$\overrightarrow a = \widehat i + \alpha \widehat j + 3\widehat k$$ and $$\overrightarrow b = 3\widehat i - \alpha \widehat j + \widehat k$$. If the area of the parallelogram whose adjacent sides are represented by the vectors $$\overrightarrow a$$ and $$\overrightarrow b$$ is $$8\sqrt 3$$ square units, then $$\overrightarrow a$$ . $$\overrightarrow b$$ is equal to __________.