Let $$\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$$ and $$\vec{b}=\hat{i}+\hat{j}-\hat{k}$$. If $$\vec{c}$$ is a vector such that $$\vec{a} \cdot \vec{c}=11, \vec{b} \cdot(\vec{a} \times \vec{c})=27$$ and $$\vec{b} \cdot \vec{c}=-\sqrt{3}|\vec{b}|$$, then $$|\vec{a} \times \vec{c}|^{2}$$ is equal to _________.
Let $$\vec{a}=6 \hat{i}+9 \hat{j}+12 \hat{k}, \vec{b}=\alpha \hat{i}+11 \hat{j}-2 \hat{k}$$ and $$\vec{c}$$ be vectors such that $$\vec{a} \times \vec{c}=\vec{a} \times \vec{b}$$. If
$$\vec{a} \cdot \vec{c}=-12, \vec{c} \cdot(\hat{i}-2 \hat{j}+\hat{k})=5$$, then $$\vec{c} \cdot(\hat{i}+\hat{j}+\hat{k})$$ is equal to _______________.
Let $$\vec{v}=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, \vec{w}=2 \alpha \hat{i}+\hat{j}-\hat{k}$$ and $$\vec{u}$$ be a vector such that $$|\vec{u}|=\alpha>0$$. If the minimum value of the scalar triple product $$\left[ {\matrix{ {\overrightarrow u } & {\overrightarrow v } & {\overrightarrow w } \cr } } \right]$$ is $$-\alpha \sqrt{3401}$$, and $$|\vec{u} \cdot \hat{i}|^{2}=\frac{m}{n}$$ where $$m$$ and $$n$$ are coprime natural numbers, then $$m+n$$ is equal to ____________.
$$A(2,6,2), B(-4,0, \lambda), C(2,3,-1)$$ and $$D(4,5,0),|\lambda| \leq 5$$ are the vertices of a quadrilateral $$A B C D$$. If its area is 18 square units, then $$5-6 \lambda$$ is equal to __________.