Let $\mathrm{f}(x)=\left\{\begin{array}{lc}3 x, & x<0 \\ \min \{1+x+[x], x+2[x]\}, & 0 \leq x \leq 2 \\ 5, & x>2\end{array}\right.$
where [.] denotes greatest integer function. If $\alpha$ and $\beta$ are the number of points, where $f$ is not continuous and is not differentiable, respectively, then $\alpha+\beta$ equals _______ .
Let the function,
$$f(x)= \begin{cases}-3 \mathrm{ax}^2-2, & x<1 \\ \mathrm{a}^2+\mathrm{b} x, & x \geqslant 1\end{cases}$$
be differentiable for all $x \in \mathbf{R}$, where $\mathrm{a}>1, \mathrm{~b} \in \mathbf{R}$. If the area of the region enclosed by $y=f(x)$ and the line $y=-20$ is $\alpha+\beta \sqrt{3}, \alpha, \beta \in Z$, then the value of $\alpha+\beta$ is ___________ .
Let $$f:(0, \pi) \rightarrow \mathbf{R}$$ be a function given by $$f(x)=\left\{\begin{array}{cc}\left(\frac{8}{7}\right)^{\frac{\tan 8 x}{\tan 7 x}}, & 0< x<\frac{\pi}{2} \\ \mathrm{a}-8, & x=\frac{\pi}{2} \\ (1+\mid \cot x)^{\frac{\mathrm{b}}{\mathrm{a}}|\tan x|}, & \frac{\pi}{2} < x < \pi\end{array}\right.$$
where $$\mathrm{a}, \mathrm{b} \in \mathbf{Z}$$. If $$f$$ is continuous at $$x=\frac{\pi}{2}$$, then $$\mathrm{a}^2+\mathrm{b}^2$$ is equal to _________.
If $$\alpha=\lim _\limits{x \rightarrow 0^{+}}\left(\frac{\mathrm{e}^{\sqrt{\tan x}}-\mathrm{e}^{\sqrt{x}}}{\sqrt{\tan x}-\sqrt{x}}\right)$$ and $$\beta=\lim _\limits{x \rightarrow 0}(1+\sin x)^{\frac{1}{2} \cot x}$$ are the roots of the quadratic equation $$\mathrm{a} x^2+\mathrm{b} x-\sqrt{\mathrm{e}}=0$$, then $$12 \log _{\mathrm{e}}(\mathrm{a}+\mathrm{b})$$ is equal to _________.