1
JEE Main 2024 (Online) 8th April Evening Shift
Numerical
+4
-1
Change Language

If $$\alpha=\lim _\limits{x \rightarrow 0^{+}}\left(\frac{\mathrm{e}^{\sqrt{\tan x}}-\mathrm{e}^{\sqrt{x}}}{\sqrt{\tan x}-\sqrt{x}}\right)$$ and $$\beta=\lim _\limits{x \rightarrow 0}(1+\sin x)^{\frac{1}{2} \cot x}$$ are the roots of the quadratic equation $$\mathrm{a} x^2+\mathrm{b} x-\sqrt{\mathrm{e}}=0$$, then $$12 \log _{\mathrm{e}}(\mathrm{a}+\mathrm{b})$$ is equal to _________.

Your input ____
2
JEE Main 2024 (Online) 8th April Morning Shift
Numerical
+4
-1
Change Language

The value of $$\lim _\limits{x \rightarrow 0} 2\left(\frac{1-\cos x \sqrt{\cos 2 x} \sqrt[3]{\cos 3 x} \ldots \ldots . \sqrt[10]{\cos 10 x}}{x^2}\right)$$ is __________.

Your input ____
3
JEE Main 2024 (Online) 6th April Evening Shift
Numerical
+4
-1
Change Language

Let $$[t]$$ denote the greatest integer less than or equal to $$t$$. Let $$f:[0, \infty) \rightarrow \mathbf{R}$$ be a function defined by $$f(x)=\left[\frac{x}{2}+3\right]-[\sqrt{x}]$$. Let $$\mathrm{S}$$ be the set of all points in the interval $$[0,8]$$ at which $$f$$ is not continuous. Then $$\sum_\limits{\text {aes }} a$$ is equal to __________.

Your input ____
4
JEE Main 2024 (Online) 5th April Evening Shift
Numerical
+4
-1
Change Language

Let $$\mathrm{a}>0$$ be a root of the equation $$2 x^2+x-2=0$$. If $$\lim _\limits{x \rightarrow \frac{1}{a}} \frac{16\left(1-\cos \left(2+x-2 x^2\right)\right)}{(1-a x)^2}=\alpha+\beta \sqrt{17}$$, where $$\alpha, \beta \in Z$$, then $$\alpha+\beta$$ is equal to _________.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12