1
JEE Main 2021 (Online) 20th July Evening Shift
Numerical
+4
-1
Let a function g : [ 0, 4 ] $$\to$$ R be defined as

$$g(x) = \left\{ {\matrix{ {\mathop {\max }\limits_{0 \le t \le x} \{ {t^3} - 6{t^2} + 9t - 3),} & {0 \le x \le 3} \cr {4 - x,} & {3 < x \le 4} \cr } } \right.$$, then the number of points in the interval (0, 4) where g(x) is NOT differentiable, is ____________.
Your input ____
2
JEE Main 2021 (Online) 20th July Evening Shift
Numerical
+4
-1
If $$\mathop {\lim }\limits_{x \to 0} {{\alpha x{e^x} - \beta {{\log }_e}(1 + x) + \gamma {x^2}{e^{ - x}}} \over {x{{\sin }^2}x}} = 10,\alpha ,\beta ,\gamma \in R$$, then the value of $$\alpha$$ + $$\beta$$ + $$\gamma$$ is _____________.
Your input ____
3
JEE Main 2021 (Online) 20th July Morning Shift
Numerical
+4
-1
If the value of $$\mathop {\lim }\limits_{x \to 0} {(2 - \cos x\sqrt {\cos 2x} )^{\left( {{{x + 2} \over {{x^2}}}} \right)}}$$ is equal to ea, then a is equal to __________.
Your input ____
4
JEE Main 2021 (Online) 18th March Evening Shift
Numerical
+4
-1
Let f : R $$\to$$ R satisfy the equation f(x + y) = f(x) . f(y) for all x, y $$\in$$R and f(x) $$\ne$$ 0 for any x$$\in$$R. If the function f is differentiable at x = 0 and f'(0) = 3, then

$$\mathop {\lim }\limits_{h \to 0} {1 \over h}(f(h) - 1)$$ is equal to ____________.
Your input ____
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12
© ExamGOAL 2024