1
JEE Main 2022 (Online) 28th June Evening Shift
Numerical
+4
-1
Change Language

If $$\mathop {\lim }\limits_{x \to 1} {{\sin (3{x^2} - 4x + 1) - {x^2} + 1} \over {2{x^3} - 7{x^2} + ax + b}} = - 2$$, then the value of (a $$-$$ b) is equal to ___________.

Your input ____
2
JEE Main 2022 (Online) 27th June Evening Shift
Numerical
+4
-1
Change Language

Let [t] denote the greatest integer $$\le$$ t and {t} denote the fractional part of t. The integral value of $$\alpha$$ for which the left hand limit of the function

$$f(x) = [1 + x] + {{{\alpha ^{2[x] + {\{x\}}}} + [x] - 1} \over {2[x] + \{ x\} }}$$ at x = 0 is equal to $$\alpha - {4 \over 3}$$, is _____________.

Your input ____
3
JEE Main 2022 (Online) 25th June Evening Shift
Numerical
+4
-1
Change Language

Let $$f(x) = \left[ {2{x^2} + 1} \right]$$ and $$g(x) = \left\{ {\matrix{ {2x - 3,} & {x < 0} \cr {2x + 3,} & {x \ge 0} \cr } } \right.$$, where [t] is the greatest integer $$\le$$ t. Then, in the open interval ($$-$$1, 1), the number of points where fog is discontinuous is equal to ______________.

Your input ____
4
JEE Main 2022 (Online) 24th June Morning Shift
Numerical
+4
-1
Change Language

The number of points where the function

$$f(x) = \left\{ {\matrix{ {|2{x^2} - 3x - 7|} & {if} & {x \le - 1} \cr {[4{x^2} - 1]} & {if} & { - 1 < x < 1} \cr {|x + 1| + |x - 2|} & {if} & {x \ge 1} \cr } } \right.$$

[t] denotes the greatest integer $$\le$$ t, is discontinuous is _____________.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12