1
JEE Main 2021 (Online) 16th March Evening Shift
Numerical
+4
-1
Let f : R $$\to$$ R and g : R $$\to$$ R be defined as

$$f(x) = \left\{ {\matrix{ {x + a,} & {x < 0} \cr {|x - 1|,} & {x \ge 0} \cr } } \right.$$ and

$$g(x) = \left\{ {\matrix{ {x + 1,} & {x < 0} \cr {{{(x - 1)}^2} + b,} & {x \ge 0} \cr } } \right.$$,

where a, b are non-negative real numbers. If (gof) (x) is continuous for all x $$\in$$ R, then a + b is equal to ____________.
2
JEE Main 2021 (Online) 16th March Morning Shift
Numerical
+4
-1
Let f : (0, 2) $$\to$$ R be defined as f(x) = log2$$\left( {1 + \tan \left( {{{\pi x} \over 4}} \right)} \right)$$. Then, $$\mathop {\lim }\limits_{n \to \infty } {2 \over n}\left( {f\left( {{1 \over n}} \right) + f\left( {{2 \over n}} \right) + ... + f(1)} \right)$$ is equal to ___________.
3
JEE Main 2021 (Online) 16th March Morning Shift
Numerical
+4
-1
If $$\mathop {\lim }\limits_{x \to 0} {{a{e^x} - b\cos x + c{e^{ - x}}} \over {x\sin x}} = 2$$, then a + b + c is equal to ____________.
4
JEE Main 2021 (Online) 25th February Evening Shift
Numerical
+4
-1
A function f is defined on [$$-$$3, 3] as

$$f(x) = \left\{ {\matrix{ {\min \{ |x|,2 - {x^2}\} ,} & { - 2 \le x \le 2} \cr {[|x|],} & {2 < |x| \le 3} \cr } } \right.$$ where [x] denotes the greatest integer $$\le$$ x. The number of points, where f is not differentiable in ($$-$$3, 3) is ___________.
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination