Let $$f(x)=\left\{\begin{array}{l}\left|4 x^{2}-8 x+5\right|, \text { if } 8 x^{2}-6 x+1 \geqslant 0 \\ {\left[4 x^{2}-8 x+5\right], \text { if } 8 x^{2}-6 x+1<0,}\end{array}\right.$$ where $$[\alpha]$$ denotes the greatest integer less than or equal to $$\alpha$$. Then the number of points in $$\mathbf{R}$$ where $$f$$ is not differentiable is ___________.
Suppose $$\mathop {\lim }\limits_{x \to 0} {{F(x)} \over {{x^3}}}$$ exists and is equal to L, where
$$F(x) = \left| {\matrix{ {a + \sin {x \over 2}} & { - b\cos x} & 0 \cr { - b\cos x} & 0 & {a + \sin {x \over 2}} \cr 0 & {a + \sin {x \over 2}} & { - b\cos x} \cr } } \right|$$.
Then, $$-$$112 L is equal to ___________.
If $$\mathop {\lim }\limits_{x \to 1} {{\sin (3{x^2} - 4x + 1) - {x^2} + 1} \over {2{x^3} - 7{x^2} + ax + b}} = - 2$$, then the value of (a $$-$$ b) is equal to ___________.
Let [t] denote the greatest integer $$\le$$ t and {t} denote the fractional part of t. The integral value of $$\alpha$$ for which the left hand limit of the function
$$f(x) = [1 + x] + {{{\alpha ^{2[x] + {\{x\}}}} + [x] - 1} \over {2[x] + \{ x\} }}$$ at x = 0 is equal to $$\alpha - {4 \over 3}$$, is _____________.