1
JEE Main 2021 (Online) 22th July Evening Shift
Numerical
+4
-1
Let f : R $$\to$$ R be a function defined as $$f(x) = \left\{ {\matrix{ {3\left( {1 - {{|x|} \over 2}} \right)} & {if} & {|x|\, \le 2} \cr 0 & {if} & {|x|\, > 2} \cr } } \right.$$

Let g : R $$\to$$ R be given by $$g(x) = f(x + 2) - f(x - 2)$$. If n and m denote the number of points in R where g is not continuous and not differentiable, respectively, then n + m is equal to ______________.
2
JEE Main 2021 (Online) 20th July Evening Shift
Numerical
+4
-1
Let a function g : [ 0, 4 ] $$\to$$ R be defined as

$$g(x) = \left\{ {\matrix{ {\mathop {\max }\limits_{0 \le t \le x} \{ {t^3} - 6{t^2} + 9t - 3),} & {0 \le x \le 3} \cr {4 - x,} & {3 < x \le 4} \cr } } \right.$$, then the number of points in the interval (0, 4) where g(x) is NOT differentiable, is ____________.
3
JEE Main 2021 (Online) 20th July Evening Shift
Numerical
+4
-1
If $$\mathop {\lim }\limits_{x \to 0} {{\alpha x{e^x} - \beta {{\log }_e}(1 + x) + \gamma {x^2}{e^{ - x}}} \over {x{{\sin }^2}x}} = 10,\alpha ,\beta ,\gamma \in R$$, then the value of $$\alpha$$ + $$\beta$$ + $$\gamma$$ is _____________.
4
JEE Main 2021 (Online) 20th July Morning Shift
Numerical
+4
-1
If the value of $$\mathop {\lim }\limits_{x \to 0} {(2 - \cos x\sqrt {\cos 2x} )^{\left( {{{x + 2} \over {{x^2}}}} \right)}}$$ is equal to ea, then a is equal to __________.
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination