If the $$1011^{\text {th }}$$ term from the end in the binominal expansion of $$\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{2022}$$ is 1024 times $$1011^{\text {th }}$$R term from the beginning, then $$|x|$$ is equal to
Let the number $$(22)^{2022}+(2022)^{22}$$ leave the remainder $$\alpha$$ when divided by 3 and $$\beta$$ when divided by 7. Then $$\left(\alpha^{2}+\beta^{2}\right)$$ is equal to :
If the coefficients of $$x$$ and $$x^{2}$$ in $$(1+x)^{\mathrm{p}}(1-x)^{\mathrm{q}}$$ are 4 and $$-$$5 respectively, then $$2 p+3 q$$ is equal to :
If the coefficient of $${x^7}$$ in $${\left( {ax - {1 \over {b{x^2}}}} \right)^{13}}$$ and the coefficient of $${x^{ - 5}}$$ in $${\left( {ax + {1 \over {b{x^2}}}} \right)^{13}}$$ are equal, then $${a^4}{b^4}$$ is equal to :