1
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If the coefficient of $${x^7}$$ in $${\left[ {a{x^2} + \left( {{1 \over {bx}}} \right)} \right]^{11}}$$ equals the coefficient of $${x^{ - 7}}$$ in $${\left[ {ax - \left( {{1 \over {b{x^2}}}} \right)} \right]^{11}}$$, then $$a$$ and $$b$$ satisfy the relation
A
$$a - b = 1$$
B
$$a + b = 1$$
C
$${a \over b} = 1$$
D
$$ab = 1$$
2
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If $$x$$ is so small that $${x^3}$$ and higher powers of $$x$$ may be neglected, then $${{{{\left( {1 + x} \right)}^{{3 \over 2}}} - {{\left( {1 + {1 \over 2}x} \right)}^3}} \over {{{\left( {1 - x} \right)}^{{1 \over 2}}}}}$$ may be approximated as
A
$$1 - {3 \over 8}{x^2}$$
B
$$3x + {3 \over 8}{x^2}$$
C
$$ - {3 \over 8}{x^2}$$
D
$${x \over 2} - {3 \over 8}{x^2}$$
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If the coefficients of rth, (r+1)th, and (r + 2)th terms in the binomial expansion of $${{\rm{(1 + y )}}^m}$$ are in A.P., then m and r satisfy the equation
A
$${m^2} - m(4r - 1) + 4\,{r^2} - 2 = 0$$
B
$${m^2} - m(4r + 1) + 4\,{r^2} + 2 = 0$$
C
$${m^2} - m(4r + 1) + 4\,{r^2} - 2 = 0$$
D
$${m^2} - m(4r - 1) + 4\,{r^2} + 2 = 0$$
4
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$S(K)$$ $$ = 1 + 3 + 5... + \left( {2K - 1} \right) = 3 + {K^2}.$$ Then which of the following is true
A
Principle of mathematical induction can be used to prove the formula
B
$$S\left( K \right) \Rightarrow S\left( {K + 1} \right)$$
C
$$S\left( K \right) \ne S\left( {K + 1} \right)$$
D
$$S\left( 1 \right)$$ is correct
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSAT
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN