1
AIEEE 2009
+4
-1
Out of Syllabus
If $$P$$ and $$Q$$ are the points of intersection of the circles
$${x^2} + {y^2} + 3x + 7y + 2p - 5 = 0$$ and $${x^2} + {y^2} + 2x + 2y - {p^2} = 0$$ then there is a circle passing through $$P,Q$$ and $$(1, 1)$$ for :
A
all except one value of $$p$$
B
all except two values of $$p$$
C
exactly one value of $$p$$
D
all values of $$p$$
2
AIEEE 2008
+4
-1
The point diametrically opposite to the point $$P(1, 0)$$ on the circle $${x^2} + {y^2} + 2x + 4y - 3 = 0$$ is :
A
$$(3, -4)$$
B
$$(-3, 4)$$
C
$$(-3, -4)$$
D
$$(3, 4)$$
3
AIEEE 2008
+4
-1
Out of Syllabus
The differential equation of the family of circles with fixed radius $$5$$ units and centre on the line $$y = 2$$ is :
A
$$\left( {x - 2} \right){y^2} = 25 - {\left( {y - 2} \right)^2}$$
B
$$\left( {y - 2} \right){y^2} = 25 - {\left( {y - 2} \right)^2}$$
C
$${\left( {y - 2} \right)^2}{y^2} = 25 - {\left( {y - 2} \right)^2}$$
D
$${\left( {x - 2} \right)^2}{y^2} = 25 - {\left( {y - 2} \right)^2}$$
4
AIEEE 2007
+4
-1
Out of Syllabus
Consider a family of circles which are passing through the point $$(-1, 1)$$ and are tangent to $$x$$-axis. If $$(h, k)$$ are the coordinate of the centre of the circles, then the set of values of $$k$$ is given by the interval :
A
$$- {1 \over 2} \le k \le {1 \over 2}$$
B
$$k \le {1 \over 2}$$
C
$$0 \le k \le {1 \over 2}$$
D
$$k \ge {1 \over 2}$$
EXAM MAP
Medical
NEET