The function $f:(-\infty, \infty) \rightarrow(-\infty, 1)$, defined by $f(x)=\frac{2^x-2^{-x}}{2^x+2^{-x}}$ is :
Let P be the image of the point $\mathrm{Q}(7,-2,5)$ in the line $\mathrm{L}: \frac{x-1}{2}=\frac{y+1}{3}=\frac{z}{4}$ and $\mathrm{R}(5, \mathrm{p}, \mathrm{q})$ be a point on $L$. Then the square of the area of $\triangle P Q R$ is _________.
If $\int \frac{2 x^2+5 x+9}{\sqrt{x^2+x+1}} \mathrm{~d} x=x \sqrt{x^2+x+1}+\alpha \sqrt{x^2+x+1}+\beta \log _{\mathrm{e}}\left|x+\frac{1}{2}+\sqrt{x^2+x+1}\right|+\mathrm{C}$, where $C$ is the constant of integration, then $\alpha+2 \beta$ is equal to __________ .
Let $y=y(x)$ be the solution of the differential equation $2 \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\sin 2 x-4 y \sin x, x \in\left(0, \frac{\pi}{2}\right)$. If $y\left(\frac{\pi}{3}\right)=0$, then $y^{\prime}\left(\frac{\pi}{4}\right)+y\left(\frac{\pi}{4}\right)$ is equal to _________.