If the system of equations $$ \begin{aligned} & x+2 y-3 z=2 \\ & 2 x+\lambda y+5 z=5 \\ & 14 x+3 y+\mu z=33 \end{aligned} $$ has infinitely many solutions, then $\lambda+\mu$ is equal to :
Suppose $A$ and $B$ are the coefficients of $30^{\text {th }}$ and $12^{\text {th }}$ terms respectively in the binomial expansion of $(1+x)^{2 \mathrm{n}-1}$. If $2 \mathrm{~A}=5 \mathrm{~B}$, then n is equal to:
Let the position vectors of three vertices of a triangle be $4 \vec{p}+\vec{q}-3 \vec{r},-5 \vec{p}+\vec{q}+2 \vec{r}$ and $2 \vec{p}-\vec{q}+2 \vec{r}$. If the position vectors of the orthocenter and the circumcenter of the triangle are $\frac{\vec{p}+\vec{q}+\vec{r}}{4}$ and $\alpha \vec{p}+\beta \vec{q}+\gamma \vec{r}$ respectively, then $\alpha+2 \beta+5 \gamma$ is equal to :
If $7=5+\frac{1}{7}(5+\alpha)+\frac{1}{7^2}(5+2 \alpha)+\frac{1}{7^3}(5+3 \alpha)+\ldots \ldots \ldots \ldots \infty$, then the value of $\alpha$ is :