If $\int \frac{2 x^2+5 x+9}{\sqrt{x^2+x+1}} \mathrm{~d} x=x \sqrt{x^2+x+1}+\alpha \sqrt{x^2+x+1}+\beta \log _{\mathrm{e}}\left|x+\frac{1}{2}+\sqrt{x^2+x+1}\right|+\mathrm{C}$, where $C$ is the constant of integration, then $\alpha+2 \beta$ is equal to __________ .
Let $y=y(x)$ be the solution of the differential equation $2 \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\sin 2 x-4 y \sin x, x \in\left(0, \frac{\pi}{2}\right)$. If $y\left(\frac{\pi}{3}\right)=0$, then $y^{\prime}\left(\frac{\pi}{4}\right)+y\left(\frac{\pi}{4}\right)$ is equal to _________.
Number of functions $f:\{1,2, \ldots, 100\} \rightarrow\{0,1\}$, that assign 1 to exactly one of the positive integers less than or equal to 98 , is equal to ________.
Let $\mathrm{H}_1: \frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ and $\mathrm{H}_2:-\frac{x^2}{\mathrm{~A}^2}+\frac{y^2}{\mathrm{~B}^2}=1$ be two hyperbolas having length of latus rectums $15 \sqrt{2}$ and $12 \sqrt{5}$ respectively. Let their ecentricities be $e_1=\sqrt{\frac{5}{2}}$ and $e_2$ respectively. If the product of the lengths of their transverse axes is $100 \sqrt{10}$, then $25 \mathrm{e}_2^2$ is equal to _________ .