Let the position vectors of three vertices of a triangle be $4 \vec{p}+\vec{q}-3 \vec{r},-5 \vec{p}+\vec{q}+2 \vec{r}$ and $2 \vec{p}-\vec{q}+2 \vec{r}$. If the position vectors of the orthocenter and the circumcenter of the triangle are $\frac{\vec{p}+\vec{q}+\vec{r}}{4}$ and $\alpha \vec{p}+\beta \vec{q}+\gamma \vec{r}$ respectively, then $\alpha+2 \beta+5 \gamma$ is equal to :
If $7=5+\frac{1}{7}(5+\alpha)+\frac{1}{7^2}(5+2 \alpha)+\frac{1}{7^3}(5+3 \alpha)+\ldots \ldots \ldots \ldots \infty$, then the value of $\alpha$ is :
If the equation of the parabola with vertex $\mathrm{V}\left(\frac{3}{2}, 3\right)$ and the directrix $x+2 y=0$ is $\alpha x^2+\beta y^2-\gamma x y-30 x-60 y+225=0$, then $\alpha+\beta+\gamma$ is equal to :
Let $\overrightarrow{\mathrm{a}}=3 \hat{i}-\hat{j}+2 \hat{k}, \overrightarrow{\mathrm{~b}}=\overrightarrow{\mathrm{a}} \times(\hat{i}-2 \hat{k})$ and $\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}} \times \hat{k}$. Then the projection of $\overrightarrow{\mathrm{c}}-2 \hat{j}$ on $\vec{a}$ is :