Let $\overrightarrow{\mathrm{a}}=3 \hat{i}-\hat{j}+2 \hat{k}, \overrightarrow{\mathrm{~b}}=\overrightarrow{\mathrm{a}} \times(\hat{i}-2 \hat{k})$ and $\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}} \times \hat{k}$. Then the projection of $\overrightarrow{\mathrm{c}}-2 \hat{j}$ on $\vec{a}$ is :
The equation of the chord, of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$, whose mid-point is $(3,1)$ is :
Let the points $\left(\frac{11}{2}, \alpha\right)$ lie on or inside the triangle with sides $x+y=11, x+2 y=16$ and $2 x+3 y=29$. Then the product of the smallest and the largest values of $\alpha$ is equal to :
Group A consists of 7 boys and 3 girls, while group B consists of 6 boys and 5 girls. The number of ways, 4 boys and 4 girls can be invited for a picnic if 5 of them must be from group $A$ and the remaining 3 from group $B$, is equal to :