1
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

In an arithmetic progression, if $\mathrm{S}_{40}=1030$ and $\mathrm{S}_{12}=57$, then $\mathrm{S}_{30}-\mathrm{S}_{10}$ is equal to :

A
525
B
505
C
510
D
515
2
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be a square matrix of order 2 with entries either 0 or 1 . Let E be the event that A is an invertible matrix. Then the probability $\mathrm{P}(\mathrm{E})$ is :

A
$\frac{3}{8}$
B
$\frac{1}{8}$
C
$\frac{3}{16}$
D
$\frac{5}{8}$
3
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $(2,3)$ be the largest open interval in which the function $f(x)=2 \log _{\mathrm{e}}(x-2)-x^2+a x+1$ is strictly increasing and (b, c) be the largest open interval, in which the function $\mathrm{g}(x)=(x-1)^3(x+2-\mathrm{a})^2$ is strictly decreasing. Then $100(\mathrm{a}+\mathrm{b}-\mathrm{c})$ is equal to :

A
360
B
420
C
160
D
280
4
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\mathrm{A}=\left\{x \in(0, \pi)-\left\{\frac{\pi}{2}\right\}: \log _{(2 /\pi)}|\sin x|+\log _{(2 / \pi)}|\cos x|=2\right\}$ and $\mathrm{B}=\{x \geqslant 0: \sqrt{x}(\sqrt{x}-4)-3|\sqrt{x}-2|+6=0\}$. Then $\mathrm{n}(\mathrm{A} \cup \mathrm{B})$ is equal to :

A
4
B
8
C
6
D
2
JEE Main Papers
2023
2021
EXAM MAP