Number of functions $f:\{1,2, \ldots, 100\} \rightarrow\{0,1\}$, that assign 1 to exactly one of the positive integers less than or equal to 98 , is equal to ________.
Let $\mathrm{H}_1: \frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ and $\mathrm{H}_2:-\frac{x^2}{\mathrm{~A}^2}+\frac{y^2}{\mathrm{~B}^2}=1$ be two hyperbolas having length of latus rectums $15 \sqrt{2}$ and $12 \sqrt{5}$ respectively. Let their ecentricities be $e_1=\sqrt{\frac{5}{2}}$ and $e_2$ respectively. If the product of the lengths of their transverse axes is $100 \sqrt{10}$, then $25 \mathrm{e}_2^2$ is equal to _________ .
N equally spaced charges each of value q , are placed on a circle of radius R . The circle rotates about its axis with an angular velocity $\omega$ as shown in the figure. A bigger Amperian loop B encloses the whole circle where as a smaller Amperian loop A encloses a small segment. The difference between enclosed currents, $I_A-I_B$, for the given Amperian loops is
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of $P_1$ and $P_2$ are orthogonal to each other. The polarizer $P_3$ covers both the slits with its transmission axis at $45^{\circ}$ to those of $P_1$ and $P_2$. An unpolarized light of wavelength $\lambda$ and intensity $I_0$ is incident on $P_1$ and $P_2$. The intensity at a point after $P_3$ where the path difference between the light waves from $s_1$ and $s_2$ is $\frac{\lambda}{3}$, is