If the equation of the parabola with vertex $\mathrm{V}\left(\frac{3}{2}, 3\right)$ and the directrix $x+2 y=0$ is $\alpha x^2+\beta y^2-\gamma x y-30 x-60 y+225=0$, then $\alpha+\beta+\gamma$ is equal to :
Let $\overrightarrow{\mathrm{a}}=3 \hat{i}-\hat{j}+2 \hat{k}, \overrightarrow{\mathrm{~b}}=\overrightarrow{\mathrm{a}} \times(\hat{i}-2 \hat{k})$ and $\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}} \times \hat{k}$. Then the projection of $\overrightarrow{\mathrm{c}}-2 \hat{j}$ on $\vec{a}$ is :
The equation of the chord, of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$, whose mid-point is $(3,1)$ is :
Let the points $\left(\frac{11}{2}, \alpha\right)$ lie on or inside the triangle with sides $x+y=11, x+2 y=16$ and $2 x+3 y=29$. Then the product of the smallest and the largest values of $\alpha$ is equal to :