1
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be a square matrix of order 2 with entries either 0 or 1 . Let E be the event that A is an invertible matrix. Then the probability $\mathrm{P}(\mathrm{E})$ is :

A
$\frac{3}{8}$
B
$\frac{1}{8}$
C
$\frac{3}{16}$
D
$\frac{5}{8}$
2
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let $(2,3)$ be the largest open interval in which the function $f(x)=2 \log _{\mathrm{e}}(x-2)-x^2+a x+1$ is strictly increasing and (b, c) be the largest open interval, in which the function $\mathrm{g}(x)=(x-1)^3(x+2-\mathrm{a})^2$ is strictly decreasing. Then $100(\mathrm{a}+\mathrm{b}-\mathrm{c})$ is equal to :

A
360
B
420
C
160
D
280
3
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let $\mathrm{A}=\left\{x \in(0, \pi)-\left\{\frac{\pi}{2}\right\}: \log _{(2 / \pi)}|\sin x|+\log _{(2 / \pi)}|\cos x|=2\right\}$ and $\mathrm{B}=\{x \geqslant 0: \sqrt{x}(\sqrt{x}-4)-3|\sqrt{x}-2|+6=0\}$. Then $\mathrm{n}(\mathrm{A} \cup \mathrm{B})$ is equal to :

A
4
B
8
C
6
D
2
4
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1

The area of the region enclosed by the curves $y=\mathrm{e}^x, y=\left|\mathrm{e}^x-1\right|$ and $y$-axis is :

A
$1+\log _{\mathrm{e}} 2$
B
$\log _{\mathrm{e}} 2$
C
$1-\log _{\mathrm{e}} 2$
D
$2 \log _{\mathrm{e}} 2-1$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12