1
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$y=y(x)$$ is the solution curve of the differential equation

$$\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1$$, then $$y\left(\frac{\pi}{6}\right)$$ is equal to

A
$$\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2 \sqrt{3}}{e}\right)$$
B
$$\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2 \sqrt{3}}{e}\right)$$
C
$$\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)$$
D
$$\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)$$
2
JEE Main 2023 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language

If $$\int_\limits{0}^{1}\left(x^{21}+x^{14}+x^{7}\right)\left(2 x^{14}+3 x^{7}+6\right)^{1 / 7} d x=\frac{1}{l}(11)^{m / n}$$ where $$l, m, n \in \mathbb{N}, m$$ and $$n$$ are coprime then $$l+m+n$$ is equal to ____________.

Your input ____
3
JEE Main 2023 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language

Let $$a_{1}=8, a_{2}, a_{3}, \ldots, a_{n}$$ be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170 , then the product of its middle two terms is ___________.

Your input ____
4
JEE Main 2023 (Online) 1st February Morning Shift
Numerical
+4
-1
Change Language

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(x)+f(x)=\int_\limits{0}^{2} f(t) d t$$. If $$f(0)=e^{-2}$$, then $$2 f(0)-f(2)$$ is equal to ____________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12