The area enclosed by the closed curve $$\mathrm{C}$$ given by the differential equation
$$\frac{d y}{d x}+\frac{x+a}{y-2}=0, y(1)=0$$ is $$4 \pi$$.
Let $$P$$ and $$Q$$ be the points of intersection of the curve $$\mathrm{C}$$ and the $$y$$-axis. If normals at $$P$$ and $$Q$$ on the curve $$\mathrm{C}$$ intersect $$x$$-axis at points $$R$$ and $$S$$ respectively, then the length of the line segment $$R S$$ is :
If the orthocentre of the triangle, whose vertices are (1, 2), (2, 3) and (3, 1) is $$(\alpha,\beta)$$, then the quadratic equation whose roots are $$\alpha+4\beta$$ and $$4\alpha+\beta$$, is :
If $$y=y(x)$$ is the solution curve of the differential equation
$$\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1$$, then $$y\left(\frac{\pi}{6}\right)$$ is equal to
If $$\int_\limits{0}^{1}\left(x^{21}+x^{14}+x^{7}\right)\left(2 x^{14}+3 x^{7}+6\right)^{1 / 7} d x=\frac{1}{l}(11)^{m / n}$$ where $$l, m, n \in \mathbb{N}, m$$ and $$n$$ are coprime then $$l+m+n$$ is equal to ____________.