A mercury drop of radius $$10^{-3}~\mathrm{m}$$ is broken into 125 equal size droplets. Surface tension of mercury is $$0.45~\mathrm{Nm}^{-1}$$. The gain in surface energy is :
Two equal positive point charges are separated by a distance $$2 a$$. The distance of a point from the centre of the line joining two charges on the equatorial line (perpendicular bisector) at which force experienced by a test charge $$\mathrm{q}_{0}$$ becomes maximum is $$\frac{a}{\sqrt{x}}$$. The value of $$x$$ is __________.
A charge particle of $$2 ~\mu \mathrm{C}$$ accelerated by a potential difference of $$100 \mathrm{~V}$$ enters a region of uniform magnetic field of magnitude $$4 ~\mathrm{mT}$$ at right angle to the direction of field. The charge particle completes semicircle of radius $$3 \mathrm{~cm}$$ inside magnetic field. The mass of the charge particle is __________ $$\times 10^{-18} \mathrm{~kg}$$
A light of energy $$12.75 ~\mathrm{eV}$$ is incident on a hydrogen atom in its ground state. The atom absorbs the radiation and reaches to one of its excited states. The angular momentum of the atom in the excited state is $$\frac{x}{\pi} \times 10^{-17} ~\mathrm{eVs}$$. The value of $$x$$ is ___________ (use $$h=4.14 \times 10^{-15} ~\mathrm{eVs}, c=3 \times 10^{8} \mathrm{~ms}^{-1}$$ ).