(i) $$\mathrm{X}(\mathrm{g}) \rightleftharpoons \mathrm{Y}(\mathrm{g})+\mathrm{Z}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{p} 1}=3$$
(ii) $$\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{p} 2}=1$$
If the degree of dissociation and initial concentration of both the reactants $$\mathrm{X}(\mathrm{g})$$ and $$\mathrm{A}(\mathrm{g})$$ are equal, then the ratio of the total pressure at equilibrium $$\left(\frac{p_{1}}{p_{2}}\right)$$ is equal to $$\mathrm{x}: 1$$. The value of $$\mathrm{x}$$ is _____________ (Nearest integer)
The density of $$3 \mathrm{M}$$ solution of $$\mathrm{NaCl}$$ is $$1.0 \mathrm{~g} \mathrm{~mL}^{-1}$$. Molality of the solution is ____________ $$\times 10^{-2} \mathrm{~m}$$. (Nearest integer).
Given: Molar mass of $$\mathrm{Na}$$ and $$\mathrm{Cl}$$ is $$23$$ and $$35.5 \mathrm{~g} \mathrm{~mol}^{-1}$$ respectively.
The value of $$\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots .+\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !}$$ is :
Let $$S$$ be the set of all solutions of the equation $$\cos ^{-1}(2 x)-2 \cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\pi, x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$$. Then $$\sum_\limits{x \in S} 2 \sin ^{-1}\left(x^{2}-1\right)$$ is equal to :