1
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$S = \left\{ {x:x \in \mathbb{R}\,\mathrm{and}\,{{(\sqrt 3 + \sqrt 2 )}^{{x^2} - 4}} + {{(\sqrt 3 - \sqrt 2 )}^{{x^2} - 4}} = 10} \right\}$$. Then $$n(S)$$ is equal to

A
6
B
4
C
0
D
2
2
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the center and radius of the circle $$\left| {{{z - 2} \over {z - 3}}} \right| = 2$$ are respectively $$(\alpha,\beta)$$ and $$\gamma$$, then $$3(\alpha+\beta+\gamma)$$ is equal to :

A
12
B
10
C
11
D
9
3
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are 1, 3, 5, then the sum of cubes of the remaining two observations is :

A
1792
B
1216
C
1456
D
1072
4
JEE Main 2023 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x) = 2x + {\tan ^{ - 1}}x$$ and $$g(x) = {\log _e}(\sqrt {1 + {x^2}} + x),x \in [0,3]$$. Then

A
there exists $$\widehat x \in [0,3]$$ such that $$f'(\widehat x) < g'(\widehat x)$$
B
there exist $$0 < {x_1} < {x_2} < 3$$ such that $$f(x) < g(x),\forall x \in ({x_1},{x_2})$$
C
$$\min f'(x) = 1 + \max g'(x)$$
D
$$\max f(x) > \max g(x)$$
JEE Main Papers
2023
2021
EXAM MAP