An object moves with speed $$v_1,v_2$$ and $$v_3$$ along a line segment AB, BC and CD respectively as shown in figure. Where AB = BC and AD = 3AB, then average speed of the object will be:
A child stands on the edge of the cliff $$10 \mathrm{~m}$$ above the ground and throws a stone horizontally with an initial speed of $$5 \mathrm{~ms}^{-1}$$. Neglecting the air resistance, the speed with which the stone hits the ground will be $$\mathrm{ms}^{-1}$$ (given, $$g=10 \mathrm{~ms}^{-2}$$ ).
A proton moving with one tenth of velocity of light has a certain de Broglie wavelength of $$\lambda$$. An alpha particle having certain kinetic energy has the same de-Brogle wavelength $$\lambda$$. The ratio of kinetic energy of proton and that of alpha particle is:
Given below are two statements:
Statement I: Acceleration due to gravity is different at different places on the surface of earth.
Statement II: Acceleration due to gravity increases as we go down below the earth's surface.
In the light of the above statements, choose the correct answer from the options given below