1
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of integral $$\int_{{\pi \over 4}}^{{{3\pi } \over 4}} {{x \over {1 + \sin x}}dx} $$ is :
A
$$\pi \sqrt 2 $$
B
$$\pi \left( {\sqrt 2 - 1} \right)$$
C
$${\pi \over 2}\left( {\sqrt 2 + 1} \right)$$
D
$$2\pi \left( {\sqrt 2 - 1} \right)$$
2
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If   $${I_1} = \int_0^1 {{e^{ - x}}} {\cos ^2}x{\mkern 1mu} dx;$$

   $${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} dx$$  and

$${I_3} = \int_0^1 {{e^{ - {x^3}}}} dx;$$ then
A
I2  >  I3  >  I1
B
I2  >  I1  >  I3
C
I3  >  I2  >  I1
D
I3  >  I1  >  I2
3
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If    $$\int {{{2x + 5} \over {\sqrt {7 - 6x - {x^2}} }}} \,\,dx = A\sqrt {7 - 6x - {x^2}} + B{\sin ^{ - 1}}\left( {{{x + 3} \over 4}} \right) + C$$
(where C is a constant of integration), then the ordered pair (A, B) is equal to :
A
(2,  1)
B
($$-$$ 2,   $$-$$1)
C
($$-$$ 2,  1)
D
(2,   $$-$$1)
4
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The curve satifying the differeial equation, (x2 $$-$$ y2) dx + 2xydy = 0 and passing through the point (1, 1) is :
A
a circle of radius one.
B
a hyperbola.
C
an ellipse.
D
a circle of radius two.
JEE Main Papers
2023
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN