1
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If    $$\int {{{2x + 5} \over {\sqrt {7 - 6x - {x^2}} }}} \,\,dx = A\sqrt {7 - 6x - {x^2}} + B{\sin ^{ - 1}}\left( {{{x + 3} \over 4}} \right) + C$$
(where C is a constant of integration), then the ordered pair (A, B) is equal to :
A
(2,  1)
B
($$-$$ 2,   $$-$$1)
C
($$-$$ 2,  1)
D
(2,   $$-$$1)
2
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If   $${I_1} = \int_0^1 {{e^{ - x}}} {\cos ^2}x{\mkern 1mu} dx;$$

   $${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} dx$$  and

$${I_3} = \int_0^1 {{e^{ - {x^3}}}} dx;$$ then
A
I2  >  I3  >  I1
B
I2  >  I1  >  I3
C
I3  >  I2  >  I1
D
I3  >  I1  >  I2
3
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of integral $$\int_{{\pi \over 4}}^{{{3\pi } \over 4}} {{x \over {1 + \sin x}}dx} $$ is :
A
$$\pi \sqrt 2 $$
B
$$\pi \left( {\sqrt 2 - 1} \right)$$
C
$${\pi \over 2}\left( {\sqrt 2 + 1} \right)$$
D
$$2\pi \left( {\sqrt 2 - 1} \right)$$
4
JEE Main 2018 (Online) 15th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f(x) be a polynomial of degree $$4$$ having extreme values at $$x = 1$$ and $$x = 2.$$

If   $$\mathop {lim}\limits_{x \to 0} \left( {{{f\left( x \right)} \over {{x^2}}} + 1} \right) = 3$$   then f($$-$$1) is equal to :
A
$${9 \over 2}$$
B
$${5 \over 2}$$
C
$${3 \over 2}$$
D
$${1 \over 2}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12