1
JEE Main 2018 (Online) 15th April Evening Slot
+4
-1
If  a,   b,   c  are in A.P. and  a2,  b2,  c2 are in G.P. such that
a < b < c and   a + b + c = $${3 \over 4},$$ then the value of a is :
A
$${1 \over 4} - {1 \over {4\sqrt 2 }}$$
B
$${1 \over 4} - {1 \over {3\sqrt 2 }}$$
C
$${1 \over 4} - {1 \over {2\sqrt 2 }}$$
D
$${1 \over 4} - {1 \over {\sqrt 2 }}$$
2
JEE Main 2018 (Online) 15th April Evening Slot
+4
-1
Out of Syllabus
Let    An = $$\left( {{3 \over 4}} \right) - {\left( {{3 \over 4}} \right)^2} + {\left( {{3 \over 4}} \right)^3}$$ $$-$$. . . . . + ($$-$$1)n-1 $${\left( {{3 \over 4}} \right)^n}$$    and    Bn = 1 $$-$$ An.
Then, the least dd natural numbr p, so that Bn > An , for all n$$\ge$$ p, is :
A
9
B
7
C
11
D
5
3
JEE Main 2018 (Online) 15th April Evening Slot
+4
-1
$$\mathop {\lim }\limits_{x \to 0} {{x\tan 2x - 2x\tan x} \over {{{\left( {1 - \cos 2x} \right)}^2}}}$$ equals :
A
$${1 \over 4}$$
B
1
C
$${1 \over 2}$$
D
$$-$$ $${1 \over 2}$$
4
JEE Main 2018 (Online) 15th April Evening Slot
+4
-1
Let f(x) = $$\left\{ {\matrix{ {{{\left( {x - 1} \right)}^{{1 \over {2 - x}}}},} & {x > 1,x \ne 2} \cr {k\,\,\,\,\,\,\,\,\,\,\,\,\,\,} & {,x = 2} \cr } } \right.$$

Thevaue of k for which f s continuous at x = 2 is :
A
1
B
e
C
e-1
D
e-2
EXAM MAP
Joint Entrance Examination