1
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If $${a^2} + {b^2} + {c^2} = - 2$$ and

f$$\left( x \right) = \left| {\matrix{ {1 + {a^2}x} & {\left( {1 + {b^2}} \right)x} & {\left( {1 + {c^2}} \right)x} \cr {\left( {1 + {a^2}} \right)x} & {1 + {b^2}x} & {\left( {1 + {c^2}} \right)x} \cr {\left( {1 + {a^2}} \right)x} & {\left( {1 + {b^2}} \right)x} & {1 + {c^2}x} \cr } } \right|,$$

then f$$(x)$$ is a polynomial of degree :

A
$$1$$
B
$$0$$
C
$$3$$
D
$$2$$
2
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
$$\int {{{\left\{ {{{\left( {\log x - 1} \right)} \over {1 + {{\left( {\log x} \right)}^2}}}} \right\}}^2}\,\,dx} $$ is equal to
A
$${{\log x} \over {{{\left( {\log x} \right)}^2} + 1}} + C$$
B
$${x \over {{x^2} + 1}} + C$$
C
$${{x{e^x}} \over {1 + {x^2}}} + C$$
D
$${x \over {{{\left( {\log x} \right)}^2} + 1}} + C$$
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If $${I_1} = \int\limits_0^1 {{2^{{x^2}}}dx,{I_2} = \int\limits_0^1 {{2^{{x^3}}}dx,\,{I_3} = \int\limits_1^2 {{2^{{x^2}}}dx} } } $$ and $${I_4} = \int\limits_1^2 {{2^{{x^3}}}dx} $$ then
A
$${I_2} > {I_1}$$
B
$${I_1} > {I_2}$$
C
$${I_3} = {I_4}$$
D
$${I_3} > {I_4}$$
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
The area enclosed between the curve $$y = {\log _e}\left( {x + e} \right)$$ and the coordinate axes is :
A
$$1$$
B
$$2$$
C
$$3$$
D
$$4$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12