1
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If the coefficients of rth, (r+1)th, and (r + 2)th terms in the binomial expansion of $${{\rm{(1 + y )}}^m}$$ are in A.P., then m and r satisfy the equation
A
$${m^2} - m(4r - 1) + 4\,{r^2} - 2 = 0$$
B
$${m^2} - m(4r + 1) + 4\,{r^2} + 2 = 0$$
C
$${m^2} - m(4r + 1) + 4\,{r^2} - 2 = 0$$
D
$${m^2} - m(4r - 1) + 4\,{r^2} + 2 = 0$$
2
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If $$x = \sum\limits_{n = 0}^\infty {{a^n},\,\,y = \sum\limits_{n = 0}^\infty {{b^n},\,\,z = \sum\limits_{n = 0}^\infty {{c^n},} } } \,\,$$ where a, b, c are in A.P and $$\,\left| a \right| < 1,\,\left| b \right| < 1,\,\left| c \right| < 1$$ then x, y, z are in
A
G.P.
B
A.P.
C
Arithmetic-Geometric Progression
D
H.P.
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
The line parallel to the $$x$$ - axis and passing through the intersection of the lines $$ax + 2by + 3b = 0$$ and $$bx - 2ay - 3a = 0,$$ where $$(a, b)$$ $$ \ne $$ $$(0, 0)$$ is :
A
below the $$x$$ - axis at a distance of $${3 \over 2}$$ from it
B
below the $$x$$ - axis at a distance of $${2 \over 3}$$ from it
C
above the $$x$$ - axis at a distance of $${3 \over 2}$$ from it
D
above the $$x$$ - axis at a distance of $${2 \over 3}$$ from it
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If a circle passes through the point (a, b) and cuts the circle $${x^2}\, + \,{y^2} = {p^2}$$ orthogonally, then the equation of the locus of its centre is :
A
$${x^2}\, + \,{y^2} - \,3ax\, - \,4\,by\,\, + \,({a^2}\, + \,{b^2} - {p^2}) = 0$$
B
$$2ax\, + \,\,2\,by\,\, - \,({a^2}\, - \,{b^2} + {p^2}) = 0$$
C
$${x^2}\, + \,{y^2} - \,2ax\, - \,\,3\,by\,\, + \,({a^2}\, - \,{b^2} - {p^2}) = 0$$
D
$$2ax\, + \,\,2\,by\,\, - \,({a^2}\, + \,{b^2} + {p^2}) = 0$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12