1
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If $$x = \sum\limits_{n = 0}^\infty {{a^n},\,\,y = \sum\limits_{n = 0}^\infty {{b^n},\,\,z = \sum\limits_{n = 0}^\infty {{c^n},} } } \,\,$$ where a, b, c are in A.P and $$\,\left| a \right| < 1,\,\left| b \right| < 1,\,\left| c \right| < 1$$ then x, y, z are in
A
G.P.
B
A.P.
C
Arithmetic-Geometric Progression
D
H.P.
2
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
The line parallel to the $$x$$ - axis and passing through the intersection of the lines $$ax + 2by + 3b = 0$$ and $$bx - 2ay - 3a = 0,$$ where $$(a, b)$$ $$ \ne $$ $$(0, 0)$$ is :
A
below the $$x$$ - axis at a distance of $${3 \over 2}$$ from it
B
below the $$x$$ - axis at a distance of $${2 \over 3}$$ from it
C
above the $$x$$ - axis at a distance of $${3 \over 2}$$ from it
D
above the $$x$$ - axis at a distance of $${2 \over 3}$$ from it
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If a circle passes through the point (a, b) and cuts the circle $${x^2}\, + \,{y^2} = {p^2}$$ orthogonally, then the equation of the locus of its centre is :
A
$${x^2}\, + \,{y^2} - \,3ax\, - \,4\,by\,\, + \,({a^2}\, + \,{b^2} - {p^2}) = 0$$
B
$$2ax\, + \,\,2\,by\,\, - \,({a^2}\, - \,{b^2} + {p^2}) = 0$$
C
$${x^2}\, + \,{y^2} - \,2ax\, - \,\,3\,by\,\, + \,({a^2}\, - \,{b^2} - {p^2}) = 0$$
D
$$2ax\, + \,\,2\,by\,\, - \,({a^2}\, + \,{b^2} + {p^2}) = 0$$
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If the circles $${x^2}\, + \,{y^2} + \,2ax\, + \,cy\, + a\,\, = 0$$ and $${x^2}\, + \,{y^2} - \,3ax\, + \,dy\, - 1\,\, = 0$$ intersect in two ditinct points P and Q then the line 5x + by - a = 0 passes through P and Q for :
A
exactly one value of a
B
no value of a
C
infinitely many values of a
D
exactly two values of a
JEE Main Papers
2023
2021
EXAM MAP