1
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
A real valued function f(x) satisfies the functional equation

f(x - y) = f(x)f(y) - f(a - x)f(a + y)

where a is given constant and f(0) = 1, f(2a - x) is equal to
A
- f(x)
B
f(x)
C
f(a) + f(a - x)
D
f(- x)
2
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
A function is matched below against an interval where it is supposed to be increasing. Which of the following pairs is incorrectly matched?
A
Interval Function
(- $$\infty $$, $$\infty $$) x3 - 3x2 + 3x + 3
B
Interval Function
[2, $$\infty $$) 2x3 - 3x2 - 12x + 6
C
Interval Function
$$\left( { - \infty ,{1 \over 3}} \right]$$ 3x2 - 2x + 1
D
Interval Function
($$ - \infty $$, - 4 ) x3 + 6x2 + 6
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Suppose $$f(x)$$ is differentiable at x = 1 and

$$\mathop {\lim }\limits_{h \to 0} {1 \over h}f\left( {1 + h} \right) = 5$$, then $$f'\left( 1 \right)$$ equals
A
3
B
4
C
5
D
6
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Let $$\alpha$$ and $$\beta$$ be the distinct roots of $$a{x^2} + bx + c = 0$$, then

$$\mathop {\lim }\limits_{x \to \alpha } {{1 - \cos \left( {a{x^2} + bx + c} \right)} \over {{{\left( {x - \alpha } \right)}^2}}}$$ is equal to
A
$${{{a^2}{{\left( {\alpha - \beta } \right)}^2}} \over 2}$$
B
0
C
$$ - {{{a^2}{{\left( {\alpha - \beta } \right)}^2}} \over 2}$$
D
$${{{{\left( {\alpha - \beta } \right)}^2}} \over 2}$$
JEE Main Papers
2023
2021
EXAM MAP