1
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
A real valued function f(x) satisfies the functional equation

f(x - y) = f(x)f(y) - f(a - x)f(a + y)

where a is given constant and f(0) = 1, f(2a - x) is equal to
A
- f(x)
B
f(x)
C
f(a) + f(a - x)
D
f(- x)
2
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
A function is matched below against an interval where it is supposed to be increasing. Which of the following pairs is incorrectly matched?
A
Interval Function
(- $$\infty $$, $$\infty $$) x3 - 3x2 + 3x + 3
B
Interval Function
[2, $$\infty $$) 2x3 - 3x2 - 12x + 6
C
Interval Function
$$\left( { - \infty ,{1 \over 3}} \right]$$ 3x2 - 2x + 1
D
Interval Function
($$ - \infty $$, - 4 ) x3 + 6x2 + 6
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Suppose $$f(x)$$ is differentiable at x = 1 and

$$\mathop {\lim }\limits_{h \to 0} {1 \over h}f\left( {1 + h} \right) = 5$$, then $$f'\left( 1 \right)$$ equals
A
3
B
4
C
5
D
6
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Let $$\alpha$$ and $$\beta$$ be the distinct roots of $$a{x^2} + bx + c = 0$$, then

$$\mathop {\lim }\limits_{x \to \alpha } {{1 - \cos \left( {a{x^2} + bx + c} \right)} \over {{{\left( {x - \alpha } \right)}^2}}}$$ is equal to
A
$${{{a^2}{{\left( {\alpha - \beta } \right)}^2}} \over 2}$$
B
0
C
$$ - {{{a^2}{{\left( {\alpha - \beta } \right)}^2}} \over 2}$$
D
$${{{{\left( {\alpha - \beta } \right)}^2}} \over 2}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12