1
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
The value of $$a$$ for which the sum of the squares of the roots of the equation
$${x^2} - \left( {a - 2} \right)x - a - 1 = 0$$ assume the least value is
A
$$1$$
B
$$0$$
C
$$3$$
D
$$2$$
2
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Let $$f:R \to R$$ be a differentiable function having $$f\left( 2 \right) = 6$$,
$$f'\left( 2 \right) = \left( {{1 \over {48}}} \right)$$. Then $$\mathop {\lim }\limits_{x \to 2} \int\limits_6^{f\left( x \right)} {{{4{t^3}} \over {x - 2}}dt} $$ equals :
A
$$24$$
B
$$36$$
C
$$12$$
D
$$18$$
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If the roots of the equation $${x^2} - bx + c = 0$$ be two consecutive integers, then $${b^2} - 4c$$ equals
A
$$-2$$
B
$$3$$
C
$$2$$
D
$$1$$
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
For any vector $${\overrightarrow a }$$ , the value of $${\left( {\overrightarrow a \times \widehat i} \right)^2} + {\left( {\overrightarrow a \times \widehat j} \right)^2} + {\left( {\overrightarrow a \times \widehat k} \right)^2}$$ is equal to :
A
$$3{\overrightarrow a ^2}$$
B
$${\overrightarrow a ^2}$$
C
$$2{\overrightarrow a ^2}$$
D
$$4{\overrightarrow a ^2}$$
JEE Main Papers
2023
2021
EXAM MAP